IoT off-line isolated power supply 3 W 5 V, <13 mW standby

SMPS based on CoolSET™ ICE3RBR4765JG current mode controller

About this document

Scope and purpose

This document presents one solution for a simple, low-power, offline flyback converter based on the Infineon ICE3RBR4765JG controller. It is an engineering report of features and performance for a 5 V 3 W solution, with explanations covering component selection, circuit and layout design.

The ICE3RBR4765JG is an offline SMPS current mode controller from the CoolSET™ jitter series, with integrated 650 V CoolMOS™ MOSFETs and a startup cell.

Intended audience

This document is intended for power supply design engineers, application engineers, students, etc., who wish to design low cost, highly reliable off-line Switched Mode Power Supply (SMPS) systems for:

- Applications related to the Internet of things (IoT)
 1) Standby power supply
 2) Power supply for microcontrollers
 3) Power supply for standalone sensors operating on a wired/wireless interface bus
- USB-power supply embedded in a wall plug
- Intelligent wall plug switched by wireless (with relay)
- Metering application
- General Applications with small formfactor in the power range 1 W to 3 W.
Table of contents

About this document ..1

1 Introduction ...3

2 Technical specification ..4

3 List of product features – ICE3RBR4765JG ...5

4 Circuit description ...6

4.1 Circuit diagram ..6

4.2 Introduction ..6

4.3 Line input rectification ..6

4.4 Primary side EMI filter ..6

4.5 Primary side snubber ...7

4.6 Power supply for CoolSET™ controller ...7

4.7 Secondary side rectification ...7

4.8 Feedback loop circuit ...8

5 CoolSET™ ICE3RBR4765JG controller ...9

5.1 Start up ..9

5.2 Peak primary current control ...9

5.3 Active Burst Mode (ABM) ...10

5.4 Protection modes and auto restart ...10

6 PCB Layout ...12

7 Bill of materials ..13

8 Transformer specification ..14

8.1 Electrical diagram ...14

8.2 Electrical specification ...14

8.3 Material ..14

8.4 Transformer build diagram ..15

8.5 Transformer design by Würth Elektronik ..15

9 Test results ..16

9.1 Efficiency ...16

9.2 No-load power consumption ..17

9.3 Light load power consumption ..17

9.4 Line and load regulation ...18

9.5 Output voltage ripple ..19

9.6 Thermal performance ..19

10 Waveforms ...20

10.1 Switching waveforms at steady state ...20

10.2 Startup ...20

10.3 Output voltage ripple ..21

10.4 Active burst mode ..22

10.5 Load transient response ..23

10.6 Output voltage overshoot and undershoot ...23

11 Conducted EMI ...26

12 References ..27

Revision history ..28
Introduction

This is an engineering report for a 5 V, 3 W offline flyback power supply. This document contains the technical specification for the power supply, a list/description of the main features, circuit and layout description as well as the measurement results.

In this application, an Infineon ICE3RBR4765JG from the CoolSET™ jitter series is used as a flyback controller. The controller has a built-in 650 V CoolMOS™ as the main switching component, as well as the startup cell. The reference design board operates in Discontinuous Conduction Mode (DCM), running at 65 kHz switching frequency. The output is a single 5 V / 600 mA, generated by secondary side regulation. Active Burst Mode (ABM) operation provides very low standby power consumption (less than 13 mW over input voltage range 180 V_{ac} ~ 265 V_{ac}). Low EMI is achieved by built-in frequency jitter and soft start operation.
Technical specification

Table 1
<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage</td>
<td>180 V\textsubscript{ac} \textasciitilde 265 V\textsubscript{ac}</td>
</tr>
<tr>
<td>Line frequency</td>
<td>50 Hz, 60 Hz</td>
</tr>
<tr>
<td>Output voltage</td>
<td>5 V ±5%</td>
</tr>
<tr>
<td>Rated output current</td>
<td>600 mA</td>
</tr>
<tr>
<td>Rated output power</td>
<td>3 W</td>
</tr>
<tr>
<td>Efficiency</td>
<td>79% @ 230 V\textsubscript{ac}, full load</td>
</tr>
<tr>
<td>Output voltage ripple (max.)</td>
<td><80 mVpp</td>
</tr>
<tr>
<td>No load power consumption @Vin:</td>
<td><13 mW</td>
</tr>
<tr>
<td>180 V\textsubscript{ac} – 265 V\textsubscript{ac}</td>
<td></td>
</tr>
<tr>
<td>Power consumption at 10 mA load</td>
<td><100 mW</td>
</tr>
<tr>
<td>Device dimensions</td>
<td>50 mm x 23.5 mm x 14 mm (L x W x H)</td>
</tr>
<tr>
<td>Isolation</td>
<td>Reinforced isolation between primary and secondary side</td>
</tr>
</tbody>
</table>
Table 2 List of features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>650 V avalanche rugged CoolMOS™ with built-in startup cell</td>
<td></td>
</tr>
<tr>
<td>Active Burst Mode (ABM) for lowest standby power</td>
<td></td>
</tr>
<tr>
<td>65 kHz internally fixed switching frequency</td>
<td></td>
</tr>
<tr>
<td>Auto restart protection mode for overload, open loop, (V_{CC}) undervoltage, overtemperature and (V_{CC}) overvoltage</td>
<td></td>
</tr>
<tr>
<td>Built-in soft start</td>
<td></td>
</tr>
<tr>
<td>Fast load jump response in Active Burst Mode (ABM)</td>
<td></td>
</tr>
<tr>
<td>Internal PWM leading edge blanking</td>
<td></td>
</tr>
<tr>
<td>Built-in frequency jitter feature and soft driving for low EMI</td>
<td></td>
</tr>
<tr>
<td>BiCMOS technology provides wide (V_{CC}) range</td>
<td></td>
</tr>
</tbody>
</table>
Circuit description

4.1 Circuit diagram

![Schematic diagram for 5 V, 3 W power supply](image)

4.2 Introduction

Key features of this application are the circuit simplicity, very small form factor and very low no-load power consumption, with regard to the performance and stable operation in all conditions. In order to fit into a very small form factor, the larger components are selected based on a maximum height as well as having the smallest PCB footprint. The very low power consumption with no-load is achieved by addressing critical components that continuously draw power, as well as the controller power consumption that depends significantly on its supply voltage.

4.3 Line input rectification

The input voltage range is 180 V\textsubscript{ac} ~ 265 V\textsubscript{ac}, and the converter is supplied by two wires without a protective ground connection. This application does not cover the low input voltage range from 85 V\textsubscript{ac}, mainly due to the need for a large bulk capacitor in the primary side.

Line input rectification circuit contains the fuse F1, the series resistor R1, the varistor V1 and the standard bridge rectifier BR1. F1 is a slow blow 500 mA fuse in a radial case. The varistor is used as a surge and overvoltage protector. Resistor R1 limits the inrush current and reduces the EMI.

4.4 Primary side EMI filter

The rectified input voltage is filtered by capacitors C1 and C2. L1 is the EMI suppressor for any high frequency spikes in the primary current. Capacitors C1 and C2 are ceramic 1uF 450 V devices in an SMD package, selected...
IoT off-line isolated power supply 3 W 5 V, <13 mW standby
SMPS based on CoolSET™ ICE3RBR4765JG current mode controller

Circuit description

particularly for the small package size. With an input voltage of 180 V_{ac} and a full load, C1 and C2 will discharge to approximately 180 V. The maximum value of the rectified voltage is 375 V for a 265 V_{ac} input.

4.5 Primary side snubber

When the CoolMOS™ MOSFET turns off, a high drain voltage spike occurs - caused by the transformer leakage inductance. These oscillations are damped by the RC snubber. D1 is a high voltage ultrafast diode with a very short recovery time. C4 is selected based on the oscillation period and the voltage overshoot on the CoolMOS™ MOSFET drain. R2's value and its power rating depend on the maximum peak current through the primary inductance and the CoolMOS™ MOSFET voltage overshoot. The design margin for the CoolMOS™ MOSFET drain to source voltage must be maintained at all operating points. The snubber also suppresses radiated EMI.

4.6 Power supply for CoolSET™ controller

When the input voltage is applied, the IC starts to charge its V_{CC} capacitor through the built-in startup cell. The startup cell is activated if the V_{CC} voltage is below the undervoltage threshold level of 10.5 V. V_{CC} charge current is controlled to 0.9 mA by the startup cell. The startup cell remains active until the V_{CC} voltage exceeds the on-threshold of 18 V, when the chip starts to operate and the startup cell is turned off. By implementing hysteresis for the startup V_{CC} voltage, an uncontrolled ringing when switching on is avoided.

![Figure 3](image)

Figure 3 Power management of the IC

In order to achieve the lowest power consumption, V_{CC} is set as low as possible within a defined range. Due to the tolerance of the IC, especially the undervoltage lockout level (which can be as high as 11.2 V), a safe margin for V_{CC} is taken into account when the transformer auxiliary winding is determined. Capacitors C6 and C7 are selected to be sufficient to keep V_{CC} above this safe margin during the discharge phase, when the IC is not in a steady state. The V_{CC} capacitance must not be unnecessarily large with respect to the startup time. In steady state conditions V_{CC} is stable as the IC is supplied from the auxiliary winding.

4.7 Secondary side rectification

The secondary side rectification circuit is a simple diode rectifier with filter capacitors. Diode D3 is a Schottky type, selected to meet the current and reverse voltage requirements. Its low forward voltage reduces the power loss in D3, and therefore lowers its temperature and improves the overall efficiency.
Selection of output capacitors C9 and C10 directly affects the output voltage ripple, standby power consumption and the repetition time period during active burst mode. In general, large output capacitors reduce the output voltage ripple and increase the repetition time period which, in turn, reduces the standby power consumption. However, too large an output capacitance leads to a very slow \(V_{\text{out}} \) discharge at extremely light load or open load. If \(V_{\text{cc}} \) discharges and triggers the UVLO before the IC enters active burst mode, the IC may be trapped in an endless auto restart mode and never enters active burst mode.

The output voltage ripple is reduced by selecting an ultra low-ESR capacitor. Typically, capacitors with ultra low ESR have relatively high leakage current that increases standby power consumption significantly. By combining one ultra low-ESR capacitor and one regular capacitor, maximum output voltage ripple is less than 80 mVpp and the standby power consumption is less than 13 mW.

4.8 Feedback loop circuit

The major requirement for the feedback loop is to match the dynamically varying load and provide stable system control. The output voltage is sensed using an LMV431 precision shunt regulator (1% initial tolerance, 1.24 V reference voltage), which has a low operating current (55 \(\mu \text{A} \)). Resistors R7 and R8 set the output voltage to 5 V. The resistance of R7 and R8 should be selected to be as large as possible to reduce the standby power consumption while not being so large that they affect control stability. R4 determines the optocoupler (U2) diode current - this is important for fast transient response and as well for standby power consumption. Optocoupler U2 is selected based on its Current Transfer Ratio (CTR) and low input current while ensuring the package permits a suitable creepage distance.

In terms of component selection, the feedback loop circuitry is the most complicated to calculate as the open load power consumption must be very low. Additionally, output voltage regulation, load transient response, stability, output voltage ripple and burst mode repetition time depend on the feedback loop. Therefore, most component values in the feedback loop are determined by testing.
IoT off-line isolated power supply 3 W 5 V, <13 mW standby
SMPS based on CoolSET™ ICE3RBR4765JG current mode controller

CoolSET™ ICE3RBR4765JG controller

5

CoolSET™ ICE3RBR4765JG controller

The ICE3RBR4765JG controller belongs to the CoolSET™ jitter series and includes built-in features for soft start, blanking window, frequency jitter, active burst mode, propagation delay compensation, modulated gate driving and auto-restart when protection features are triggered.

![Figure 4 Pin configuration PG-DSO-12](image)

For full details about the ICE3RBR4765JG controller, see [1].

5.1 Start up

The built-in startup cell is sufficient for the ICE3RBR4765JG to start without external startup resistors. The startup cell connects the drain pin to the V\textunderscore CC pin of the IC and charges the external capacitors to 18 V when the IC starts switching. At this point, the V\textunderscore CC pin is supplied from the auxiliary winding.

In the startup phase, the IC provides a soft start function to gradually increase the primary current by increasing the duty cycle in 32 steps. The soft start phase finishes 20 ms after the IC is switched on (V\textunderscore CC exceeds 18 V).

In addition to start up, the soft start function is also activated at a restart attempt during auto restart. This means that the converter transfers a significant amount of energy to the secondary side every time the IC restarts. As a consequence, when the output is open and the input voltage is interrupted significant output voltage overshoot can occur if the feedback loop response is not sufficiently fast, as the converter is charging the output capacitors even though the output voltage is close to V\textunderscore out\textunderscore nominal.

5.2 Peak primary current control

The primary current is sensed by the external shunt resistors, R3 and R13. This signal is amplified and then compared with the feedback signal for cycle by cycle peak current limit operation. If the amplified current sense signal exceeds the feedback signal, the on-time T\textunderscore on of the driver is closed.

Resistors R3 and R13 determine the maximum peak current of the integrated CoolMOS™ MOSFET and, as a result, the maximum output power is limited. Overload protection is triggered if the current sense voltage exceeds the threshold V\textunderscore sinh\textunderscore limit = 1.03 V. Integrated propagation delay compensation reduces the influence of the AC input voltage on the maximum output power. Leading edge blanking is integrated to protect the current limit from distortions caused by leading edge spikes.
In active burst mode, the peak primary current limit is reduced to $V_{CS}=0.34$ V. Thus, the conduction loss and audible noise is reduced.

5.3 Active Burst Mode (ABM)

The system enters ABM under low load conditions. With ABM, the efficiency increases significantly at light load while still maintaining a low ripple on V_{OUT} and a fast response on step changes in load. The significant feature is the extremely low standby power consumption: <13 mW at 180 V$_{AC}$~265 V$_{AC}$.

The system will enter ABM if the feedback signal falls and remains below 1.35 V for the 20 ms blanking time. This time window prevents ABM being entered due to large step changes in load. When ABM is entered, the current consumption of the IC is reduced to approximately 450 µA. During ABM, V_{CC} must be kept above the undervoltage lockout level of 10.5 V to prevent the startup cell from switching on and the IC from restarting. The feedback signal is a sawtooth between 3.5 V when the IC starts switching and 3.0 V when the IC stops switching. The feedback signal will increase immediately if there is a step change in load. The system will exit the ABM when the feedback signal exceeds 4.0 V.

5.4 Protection modes and auto restart

The IC provides an auto restart mode as a protection feature to prevent damage of the device. Table 3 shows possible system failures, conditions and corresponding protection modes.
Table 3 System failures and protection modes

<table>
<thead>
<tr>
<th>Protection function</th>
<th>Failure condition</th>
<th>Protection mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CC} overvoltage</td>
<td>1. $V_{CC} > 20.5$ V & $FB > 4$ V & during soft start period & last for 30 µs</td>
<td>Auto restart</td>
</tr>
<tr>
<td></td>
<td>2. $V_{CC} > 25.5$ V & last for (120+30) µs (inactive during burst mode)</td>
<td></td>
</tr>
<tr>
<td>Overtemperature (controller junction)</td>
<td>$T_J > 140°C$ & last for 30 µs</td>
<td>Auto restart</td>
</tr>
<tr>
<td>Overload/open loop</td>
<td>$V_{FB} > 4$ V & last for 20 ms & $V_{BA} > 4.0$ V & last for 30 µs (extended blanking time counted from charging V_{BA} from 0.9 V to 4.0 V)</td>
<td>Auto restart</td>
</tr>
<tr>
<td>V_{CC} Undervoltage/short optocoupler</td>
<td>$V_{CC} < 10.5$ V & last for 10 ms + 30 µs</td>
<td>Auto restart</td>
</tr>
<tr>
<td>Auto restart enable</td>
<td>$V_{BA} < 0.33$ V & last for 30 µs</td>
<td>Auto restart</td>
</tr>
</tbody>
</table>

When the system enters the auto restart mode, the IC will be off. At this point switching stops and V_{CC} starts to drop. When V_{CC} reaches the turn-off threshold of 10.5 V, the startup cell will turn on and start to charge V_{CC} up to the turn-on threshold of 18 V, allowing the IC to turn on again. After the startup phase, if the fault condition still exists, the IC will enter auto restart mode once again, otherwise the system will resume normal operation.
6 PCB Layout

The printed circuit board (PCB) is dual layer, double sided, and manufactured with the standard 1.5 mm thickness and 1oz copper. Between the primary and secondary side, the creepage distance is created according to requirements for reinforced isolation. The overall PCB size is 50 mm x 23.5 mm.

Figure 6 Layout top

Figure 7 Layout bottom
IoT off-line isolated power supply 3 W 5 V, <13 mW standby
SMPS based on CoolSET™ ICE3RBR4765JG current mode controller

Bill of materials

<table>
<thead>
<tr>
<th>Component designator</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Manufacturer part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR1</td>
<td>Bridge rectifier, 600 V, 0.5 A, TO-269AA</td>
<td>Vishay</td>
<td>MB6S-E3/45</td>
</tr>
<tr>
<td>C1, C2</td>
<td>Capacitor ceramic, 1 µF, 450 V, 1812</td>
<td>TDK</td>
<td>CKG45NX7T2W105M500JH</td>
</tr>
<tr>
<td>C4</td>
<td>Capacitor ceramic, 2200 pF, 250 V, 0805</td>
<td>Murata</td>
<td>GRJ21AR72E222KWJ1D</td>
</tr>
<tr>
<td>C5</td>
<td>Capacitor ceramic, 1 nF, 50 V, 0805</td>
<td>standard capacitor</td>
<td></td>
</tr>
<tr>
<td>C6</td>
<td>Capacitor ceramic, 4.7 µF, 50 V, 1206</td>
<td>standard capacitor</td>
<td></td>
</tr>
<tr>
<td>C7</td>
<td>Capacitor electrolytic, 33 µF, 35 V, SMD</td>
<td>Panasonic</td>
<td>EEE-FT1V330AR</td>
</tr>
<tr>
<td>C8</td>
<td>Capacitor ceramic, 1000 pF, 250 V, X1/Y1</td>
<td>Murata</td>
<td>DE1E3KX102MA4BN01F</td>
</tr>
<tr>
<td>C9</td>
<td>Capacitor electrolytic, 180 µF, 6.3 V, SMD</td>
<td>Würth Elektronik</td>
<td>875105144007</td>
</tr>
<tr>
<td>C10</td>
<td>Capacitor electrolytic, 330 µF, 6.3 V, SMD</td>
<td>Panasonic</td>
<td>EEEFT0J331AP</td>
</tr>
<tr>
<td>C11</td>
<td>Capacitor ceramic, 10 µF, 25 V, 1206</td>
<td>Würth Elektronik</td>
<td>885012108021</td>
</tr>
<tr>
<td>C12</td>
<td>Capacitor ceramic, 33 nF, 50 V, 0805</td>
<td>standard capacitor</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>Diode ultrafast, 600 V, 1 A, DO-214AC</td>
<td>STMicroelectronics</td>
<td>STTH1R06A</td>
</tr>
<tr>
<td>D2</td>
<td>Diode ultrafast, 200 V, 1 A, DO-214AC</td>
<td>Fairchild</td>
<td>ES1D</td>
</tr>
<tr>
<td>D3</td>
<td>Diode Schottky, 60 V, 2 A, DO-214AA</td>
<td>Vishay</td>
<td>SS26-E3/52T</td>
</tr>
<tr>
<td>F1</td>
<td>Fuse slow blow, 250 V, 0.5 A, TH</td>
<td>Multicomp</td>
<td>MST 500MA 250V</td>
</tr>
<tr>
<td>L1</td>
<td>Inductor, 68µH, 320mA, 3816</td>
<td>Würth Elektronik</td>
<td>744031680</td>
</tr>
<tr>
<td>R1</td>
<td>Resistor, 10 Ω, 300 V, 2010</td>
<td>Vishay</td>
<td>CRCW2010110R0FKEF</td>
</tr>
<tr>
<td>R2</td>
<td>Resistor, 330 kΩ, 200 V, 1%, 1206</td>
<td>standard resistor</td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>Resistor, 6.8 Ω, 1%, 1206</td>
<td>standard resistor</td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td>Resistor, 3.3 kΩ, 1%, 0805</td>
<td>standard resistor</td>
<td></td>
</tr>
<tr>
<td>R6</td>
<td>Resistor, 1 MΩ, 1%, 0805</td>
<td>standard resistor</td>
<td></td>
</tr>
<tr>
<td>R7</td>
<td>Resistor, 102 kΩ, 1%, 0805</td>
<td>standard resistor</td>
<td></td>
</tr>
<tr>
<td>R8</td>
<td>Resistor, 33 kΩ, 1%, 0805</td>
<td>standard resistor</td>
<td></td>
</tr>
<tr>
<td>R13</td>
<td>Resistor, 12 Ω, 1%, 1206</td>
<td>standard resistor</td>
<td></td>
</tr>
<tr>
<td>TR1</td>
<td>Transformer, 2.2 mH, EE13/7/4</td>
<td>Würth Elektronik</td>
<td>750817018</td>
</tr>
<tr>
<td>U1</td>
<td>IC, ICE3RBR4765JG, PG-DSO-12</td>
<td>Infineon</td>
<td>ICE3RBR4765JG</td>
</tr>
<tr>
<td>U2</td>
<td>Optocoupler, VOL618A, LSOP 4</td>
<td>Vishay</td>
<td>VOL618A-3X001T</td>
</tr>
<tr>
<td>U3</td>
<td>IC, LMV431, SOT-23-3</td>
<td>Texas Instruments</td>
<td>LMV431AIMF/NOPB</td>
</tr>
<tr>
<td>V1</td>
<td>Varistor, CU3225K300G2</td>
<td>Epcos</td>
<td>B72650M0301K072</td>
</tr>
</tbody>
</table>
8 Transformer specification

8.1 Electrical diagram

![Transformer electrical diagram](image)

Figure 8 Transformer electrical diagram

8.2 Electrical specification

<table>
<thead>
<tr>
<th>Table 5 Transformer electrical specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary inductance</td>
</tr>
<tr>
<td>Number of primary turns</td>
</tr>
<tr>
<td>Number of secondary turns</td>
</tr>
<tr>
<td>Number of auxiliary turns</td>
</tr>
</tbody>
</table>

8.3 Material

<table>
<thead>
<tr>
<th>Table 6 Transformer material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
</tr>
<tr>
<td>Coil former</td>
</tr>
<tr>
<td>Wire for primary winding</td>
</tr>
<tr>
<td>Wire for secondary winding</td>
</tr>
<tr>
<td>Wire for auxiliary winding</td>
</tr>
<tr>
<td>Insulation tape</td>
</tr>
</tbody>
</table>
IoT off-line isolated power supply 3 W 5 V, <13 mW standby
SMPS based on CoolSET™ ICE3RBR4765JG current mode controller
Transformer specification

8.4 Transformer build diagram

Figure 9 Transformer build diagram

8.5 Transformer design by Würth Elektronik

Figure 10 Transformer design by Würth Elektronik
9 Test results

9.1 Efficiency

Efficiency measurements are performed at room temperature in steady state. The line frequency is 50 Hz.

![Efficiency versus AC Line Input Voltage](image1)

Figure 11 Efficiency versus input voltage

![Efficiency versus Output Power](image2)

Figure 12 Efficiency versus output power
9.2 No-load power consumption

![Standby Power versus AC Line Input Voltage](image1.png)

Figure 13 No-load input power consumption versus input voltage

Power consumption without load is measured with the power analyzer YOKOGAWA WT3000, using the integration function for the duration of one minute.

9.3 Light load power consumption

![Input Power versus AC Line Input Voltage](image2.png)

Figure 14 Power consumption versus input voltage when $P_{\text{out}}=50$ mW
9.4 Line and load regulation

Figure 15 Line regulation at full load

Figure 16 Load regulation at $V_{in}=230\,V_{ac}$
9.5 Output voltage ripple

Maximum output voltage ripple is 70 mVpp.

9.6 Thermal performance

The thermal photos were taken with a FLIR T600 thermal camera, after the board ran at full load for 45 minutes.

The hottest component is the diode D3, with a temperature of 54°C. The controller temperature is 49°C. Ambient temperature is 25°C.
10 Waveforms

10.1 Switching waveforms at steady state

![Waveform Diagram](image-url)

Figure 19 CoolMOS™ drain and source voltage waveforms @230 V_{ac} and full load

10.2 Startup

Startup waveforms are captured @230 V_{ac} and full load (resistive load).

![Startup Waveform Diagram](image-url)

Figure 20 Drain voltage and V_{CC} voltage startup profile
IoT off-line isolated power supply 3 W 5 V, <13 mW standby
SMPS based on CoolSET™ ICE3RBR4765JG current mode controller

Waveforms

Figure 21 Output voltage startup profile

Grey: no load startup Green: full load startup

Figure 22 Output voltage ripple @230 V_{sc} and full load

10.3 Output voltage ripple
10.4 Active burst mode

Figure 23 No load active burst mode @180 V_ac

Figure 24 Active burst mode @180 V_ac when I_{out}=10 mA
IoT off-line isolated power supply 3 W 5 V, <13 mW standby
SMPS based on CoolSET™ ICE3RBR4765JG current mode controller

Waveforms

10.5 Load transient response

![Load transient response](image)

Figure 25 Load transient response

The load is switching between 50% and 100% with a 10 ms period. Slew rate is 0.2 A/µs.

10.6 Output voltage overshoot and undershoot

Test setup: V_{in} 230V; E-load: Chroma 63103A, CC mode, slew rate 0.2 A/µs.

Figure 26 shows the V_{out} overshoot and undershoot when the load changes from full load to open load and vice versa. When the full load changes to open load, the V_{out} overshoot is 5.16 V. V_{out} undershoot is 4.81 V when the load jumps from open to full load.

NB: the waveforms in this section were measured with a YOKOGAWA DLM4058 Oscilloscope. Please refer to YOKOGAWA's user manual for the DC accuracy.

![Output voltage overshoot and undershoot due to load transition](image)

Figure 26 Output voltage overshoot and undershoot due to load transition
IoT off-line isolated power supply 3 W 5 V, <13 mW standby
SMPS based on CoolSET™ ICE3RBR4765JG current mode controller

Waveforms

Some demo boards may demonstrate V_{out} dual overshoots as shown in Figure 27. The first V_{out} overshoot is due to the load jump from full load to open load. When the first V_{out} overshoot happens, V_{FB} is kept low and there is no PWM switching activity. V_{out} and V_{CC} start discharging. V_{CC} capacitor C7 and output capacitors C9 / C10 are Aluminum electrolytic capacitors with \pm20% capacitance tolerance. In extreme case, C7’s tolerance is -20%, while both C9 and C10 have tolerance of +20%. V_{CC} discharges (much) faster than V_{out}, so that V_{CC} triggers the UVLO (10.5V) before the IC enters active burst mode. Therefore, the IC enters auto restart. A second V_{out} overshoot happens when V_{CC} is charged up to 18 V and the IC starts switching. The maximum V_{out} is detected at the second overshoot: 5.23V.

Figure 27 Output voltage dual overshoots due to load transition

Figure 28 and Figure 29 show the output voltage overshoot if a short AC line interruption occurs. With an open load, the overshoot is large as the device restarts and the startup procedure charges the output capacitors which are not yet discharged (CH4 V_{out}). This overshoot can be reduced by making the feedback loop faster, but it will affect the power consumption at no load. V_{out} overshoot level is 5.19 V.

Figure 28 Output voltage overshoot due to AC line interruption
IoT off-line isolated power supply 3 W 5 V, <13 mW standby
SMPS based on CoolSET™ ICE3RBR4765JG current mode controller

Waveforms

Figure 28 Output voltage overshoot due to AC line voltage interruption (no load)

With a 10 mA load, when the AC source is removed, V_{out} discharges quickly to a low level. When the AC source is connected again, typically no overshoot was observed at V_{out}.

![Waveform](image.png)

<table>
<thead>
<tr>
<th>CH1: V_{out}</th>
<th>CH2: V_{CC}</th>
<th>CH4: I_{out}</th>
</tr>
</thead>
</table>

Figure 29 Output voltage overshoot due to AC line voltage interruption ($I_{\text{out}}=10$ mA)
11 Conducted EMI

Conducted EMI was measured according to test standard EN55022 class B, at $V_{\text{in}}=230\, \text{V}_{\text{ac}}$ and full load.

![Conducted EMI Diagram](image)

Figure 30 Line

Figure 31 Neutral
IoT off-line isolated power supply 3 W 5 V, <13 mW standby
SMPS based on CoolSET™ ICE3RBR4765JG current mode controller

References

12 References

[1] Infineon Technologies, Datasheet ICE3RBR4765JG “Fixed-Frequency, 650 V CoolSET™ in DS0-12 Package”

[2] Infineon Technologies, Application Note 10 W 12 V SMPS Evaluation Board with CoolSET®-F3R ICE3BR4765JG
IoT off-line isolated power supply 3 W 5 V, <13 mW standby
SMPS based on CoolSET™ ICE3RBR4765JG current mode controller

Revision history

Major changes since the last revision

<table>
<thead>
<tr>
<th>Page or Reference</th>
<th>Description of change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>First version</td>
</tr>
</tbody>
</table>

IMPORTANT NOTICE

The information contained in this application note is given as a hint for the implementation of the product only and shall in no event be regarded as a description or warranty of a certain functionality, condition or quality of the product. Before implementation of the product, the recipient of this application note must verify any function and other technical information given herein in the real application. Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this application note.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer’s technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

Edition 2016-09-26
Published by
Infineon Technologies AG
81726 Munich, Germany

© 2016 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?
Email: erratum@infineon.com

Document reference
AN-REF-3W-IOT-COOLSET